

Nano Semiconductor Materials Lab 
Nano Semiconductor Materials Lab
 
Westlake University
Westlake University
- Publications - (‡: co-first author; *: corresponding author) - 2025 - 1. Ming Xia‡, Tianyu Wang‡,Yuan Lu, Yahui Li, Baini Li, Hongzhi Shen, Yunfan Guo, Yi Yu, Jichen Dong*, Letian Dou*, Yunqi Liu, Enzheng Shi*, Kinetic Wulff-shaped heteroepitaxy of phase-pure 2D perovskite heterostructures with deterministic slab thickness, Nat. Synth. 2025, 4, 380-390.- We report the discovery of kinetic Wulff-shaped heteroepitaxy growth in halide perovskites, enabling the realization of well-defined 2D halide perovskite epitaxial heterostructures with deterministic slab thickness (n=1-3) in high phase purity. Optoelectronic devices based on these heterostructures exhibit substantial rectification ratios and reliable switching behaviors under both optical and electrical inputs. - 2. Yahui Li, Zhenzhu Li, Yanxin Han, Runchen Lai,Jingjing Yao, Cunquan Li, Ming Xia, Hongzhi Zhou, Xin Sheng, Baini Li, Yiling Zhang, Tianyu Wang, Xiaohuo Shi, Jianwei Zhao, Yunfan Guo, Xiaoze Liu, Aron Walsh, Enzheng Shi*, Dual oxidation suppression in lead-free perovskites for low-threshold and long-lifespan lasing, Adv. Mater. 2025, 2418931.- We developed a dual oxidation suppression strategy to suppress oxidation of Sn2+ in two-dimensional (2D) tin halide perovskites, i.e. adopting an oxygen-free two-step growth to enhance the crystal quality and incorporating electron-donating biuret molecules to coordinate with Sn2+ during the crystal growth, which led to the substantial reduction of lasing threshold to <1 μJ/cm² in (PEA)2MASn2I7. This represents the lowest value in lead-free perovskite nanolasers and approximately one order of magnitude lower than those previously reported for tin-based nanolasers. Investigations into the spontaneous photoluminescence (PL) and stimulated lasing emission revealed that 2D tin perovskites exhibited superior photostability and lasing stability compared to their lead counterparts. Specifically, lasing intensity of (PEA)2MA2Sn3I10 constantly increased by >300% under optical pumping and the lasing threshold decreased by ~17%. Our findings highlight the prospect of 2D tin halide perovskites as lead-free gain materials and cavities for solution-processed nanolasers with low lasing thresholds and exceptional stability. - 3. Yahui Li‡, Ming Xia‡, Yanxin Han‡, Zhihao Gong‡, Qi Yao, Hongzhi Zhou, Yiling Zhang, Tianyu Wang, Lijun Chai, Xin Sheng,Haiming Zhu, Long Yuan, Hua Wang*, Enzheng Shi*, Robust A-site Cation Engineering for Stable 2D High-n Tin Perovskite Homologs with Bridged Lasing Emission Gaps, Angew.Chem. Int. Ed. 2025, e202512914.- Two-dimensional high-n halide perovskites (e.g. n = 3) offer a unique platform for stable, efficient optoelectronics by synergizing improved stability with bulk-like carrier transport. However, their development is hindered by the intrinsic trade-off between continuous bandgap tunability and structural integrity. Here, we report robust A-site cation engineering to overcome these limitations in n = 3 tin perovskites. By incorporating distinct cations, we synthesized a library of homologous single crystals, including metastable (BA)2Cs2Sn3I10 (BA+: butylammonium) via growth kinetics control. It is revealed that A-site cations critically govern structural symmetry, exciton-phonon coupling, lasing etc. Tailoring cation composition enables the continuous bandgap tuning (1.62–2.01 eV) with minimal lattice mismatch (<3.6%). A-site cation engineering idealized the perovskite lattice and improved the crystal quality, e.g., the multi-cation (BA)2Cs0.7MA0.4EA0.5GA0.4Sn3I10 (MA+: methylammonium, EA+: ethylammonium, GA+: guanidinium) achieves a long carrier lifetime (15.1 ns), nearly three times that of containing single A-site, and then increases diffusion length to >1 μm. The n = 3 tin perovskites with multi-cation exhibited exceptional phase stability and the corresponding nanolaser bridged the emission gaps between single-A-cation analogs, delivering a low threshold and unprecedented stability.- 4. Baini Li, Tianyu Wang, Zhongpu Wang, Yunfan Guo*, Enzheng Shi*, Advances in Highly Aligned and Ultraclean Horizontal Carbon Nanotube Arrays, ACS Appl. Mater. Interfaces 2025, doi.org/10.1021/acsami.5c12562. - 5. Tianyu Wang, Baini Li, Ming Xia, Yiling Zhang, Hongzhi Shen, Zhongpu Wang, Xin Sheng, Yao Gao, Enzheng Shi*, Van der Waals integrated single-crystal tin perovskite transistors towards ultra-sensitive photodetection, ACS Nano, 2025, accepted.- Two-dimensional (2D) tin halide perovskites have emerged as promising lead-free semiconductors with strong optical absorption and high carrier mobility. While polycrystalline films have achieved impressive device performance, their intrinsic charge transport and exciton dynamics remain obscured by grain-boundary associated defects, limiting the fundamental understanding of material properties and optimization of device performance. Herein, by using bulky π-conjugated 4Tm+ cations, we synthesized 2D (4Tm)2SnI4 single crystals and assembled their van der Waals field effect transistors, exhibiting high hole mobility up to 5.1 cm2 V-1 s-1 at room temperature, more than two times higher than that of polycrystalline counterparts. The efficient charge transport in single crystals allows phonon-scattering dominated process persisting to lower temperature, leading mobility increasing to 10.3 cm2 V-1 s-1 at 120 K. Also, the single-crystal nature ensures remarkable responsivity/specific detectivity of 1.6 × 106 A W-1 / 4.2 × 1016 Jones under 550-nm illumination, ranking among the best Pb and Sn perovskite photodetectors. Crucially, the transistor modulation allows the gate-voltage tunable contrast in imaging for usage as pixel-active image sensors. This work uses single-crystal 2D tin perovskites as a platform for probing intrinsic electronic/optoelectronic properties while showcasing their potential in current modulation, high-sensitive photodetection, and scalable imaging systems. - 6. Jingjing Yao‡, Yahui Li‡, Xiaguang Zhang, Heyuan Liu, Ming Xia, Chong Hu, Qiu Wang, Jun Yi, Jeongmin Kim, Hailong Chen*, Enzheng Shi*, Xiaoze Liu*, Giant single-step upconversion via sub–35-fs phonon dynamics in the nonlinear optical regime, Sci. Adv. 2025, 11, eadx1686.- Phonon-assisted upconversion (UC) for anti-Stokes photoluminescence stands as a fundamental and widely studied process, central to both ultrafast electron-phonon coupling physics and diverse photonic applications. However, the ultrafast dynamics limit of UC has yet to be addressed, preventing its integration into the nonlinear optical regime. Here, we find a giant single-step UC of ~200 milli–electron volts via sub–35-femtosecond phonon dynamics in two-dimensional hybrid organic-inorganic perovskites in the nonlinear regime. The single-step UC approaches the phonon dynamics limit of ~23 femtoseconds and gains energy about eight times the room-temperature thermal energy (~25 milli–electron volts), enabling its synergistic integration into the nonlinear regime. Benefiting from the unique electron-phonon coupling between organic vibrations and excitons in inorganic lattices, the UC demonstrates distinctive signatures of Raman anisotropy and strong nonlinearity. This work opens new avenues for studying uncharted phonon dynamics and nonlinear optical mechanisms, offering substantial advantages in optical refrigeration, upconverting energy harvesting and optical microscopy.- 2024- 1. Yahui Li,‡ Hongzhi Zhou,‡ Zhihao Gong,‡ Ming Xia, YanxinHan, Xin Sheng, Tianyu Wang, Hua Wang,*Haiming Zhu,* Enzheng Shi*, Photo-Excited Carrier Behaviors ofTwo-Dimensional Tin Halide Perovskite Single Crystals, Cell Rep. Phys. Sci. 2024, 5, 102020.- 2. Jiao Wang‡, Hao Zhou‡, Yangyang Fan, Wenhao Hou, Tonghui Zhao, Zhiming Hu, Enzheng Shi*, Jiu-an Lv*,Adaptive nanotube networks enabling omnidirectionally deformable electro-driven liquid crystal elastomers towards artificial muscles, Mater. Horiz. 2024, 11, 1877-1888.- 3. Hao Zhou‡, Chiyu Zhang‡, Anran Gao*, Enzheng Shi*, Yunfan Guo*, Patterned growth of two-dimensional atomic layer semiconductors, Chem. Commun. 2024, 60, 943-955- 4. Zhenwei Ou, Cheng Wang, Zhi-Guo Tao, Yahui Li, Zhe Li, Yan Zeng, Yan Li, Enzheng Shi, Weibin Chu*, Ti Wang*, and Hongxing Xu*, Organic Ligand Engineering for Tailoring Electron–Phonon Coupling in 2D Hybrid Perovskites,Nano Lett. 2024, 24, 5975–5983.- 5. Yong Ding‡, Bin Ding‡, Pengju Shi‡, Jan Romano-deGea‡, Yahui Li‡, Roland C Turnell-Ritson, Olga A Syzgantseva,Ilhan Yavuz, Ming Xia, Ruohan Yu, Maria A Syzgantseva, Jean-Nicolas Audinot, Xiaohe Miao, Xiaobin Liao, Jiantao Li, Patrick Dörflinger, Vladimir Dyakonov, Cheng Liu, Yi Yang, Li Tao, Keith G Brooks, Andre Slonopas, Jiahong Pan, Lei Zhang, Qinyou An, Yaoguang Rong, Jun Peng, Liming Ding, Enzheng Shi,Liqiang Mai, Songyuan Dai, Kangning Zhao*, Jiang Sheng*, Rui Wang*, Paul J Dyson*, Mohammad Khaja Nazeeruddin*, Cation reactivity inhibits perovskite degradation in efficient and stable solar modules, Science 2024,386, 531-538.- 6. Hongzhi Zhou‡, Qingjie Feng‡, Cheng Sun, Yahui Li, Weijian Tao, Wei Tang, Linjun Li, Enzheng Shi, Guangjun Nan*, Haiming Zhu*, Robust excitonic light emission in 2D tin halide perovskites by weak excited state polaronic effect, Nat. Commun. 2024, 15, 8541.- 7. Xue Lou, Yahui Li, Haixin Lei, Yao Zhang, Hongzhi Zhou, Enzheng Shi, Haiming Zhu*, Robust and Efficient Out-of-Plane Exciton Transport in Two-Dimensional Perovskites via Ultrafast Förster Energy Transfer, ACS Nano 2024, 18, 20659-20666.- 8. Pengju Shi‡, Jiazhe Xu‡, Ilhan Yavuz‡, Tianyi Huang, Shaun Tan, Ke Zhao, Xu Zhang, Yuan Tian, Sisi Wang, Wei Fan, Yahui Li, Donger Jin, Xuemeng Yu, Chenyue Wang, Xingyu Gao, Zhong Chen, Enzheng Shi, Xihan Chen, Deren Yang, Jingjing Xue*, Yang Yang*, Rui Wang*, Strain regulates the photovoltaic performance of thick-film perovskites, Nat. Commun. 2024, 15, 2579.- 9. Zhenwei Ou, Cheng Wang, Zhi-Guo Tao, Yahui Li, Zhe Li, Yan Zeng, Yan Li, Enzheng Shi, Weibin Chu*, Ti Wang*, and Hongxing Xu*, Organic Ligand Engineering for Tailoring Electron–Phonon Coupling in 2D Hybrid Perovskites,Nano Lett. 2024, 24, 5975–5983.- 10. Ibrahim Al Keyyam, Mahya Rahbar, Nicholas Hunter, Baini Li, Tianyu Wang*, Enzheng Shi, Xinwei Wang*, T− n (n: 2.4∼ 2.56) temperature dependence of thermal resistance at single-walled carbon nanotubes/SiO2 interface at< 8 nm scale, Int. J. Heat Mass Transf. 2024, 226, 125513.- 11. Zhiyuan Xia, Ziming Ye, Bo Zhao, Tingsong Zhang, Qi Wang, Kun Chen, Meng Li, Xiaobing Kong, Yu-Qing Zheng, Enzheng Shi, Yuanyuan Shang*, Anyuan Cao*, CNT array-induced nanobubble assembly, nanodisk fabrication and enhanced spectral detection of CNT bundle density, Nano Res. 2024, 17, 1-9.- 12. Ibrahim Al Keyyam, Mahya Rahbar, Enzheng Shi, Baini Li*, Tianyu Wang*, Xinwei Wang*, Thermal Conductance between< 6 nm Single-Walled Carbon Nanotube Bundle and Si Substrate, J. Phys. Chem. C 2024, 128, 1505-1517. - 2023 - 1. Y. Li‡, H. Zhou‡, M. Xia‡, H. Shen, T. Wang, H. Gao, X. Sheng, Y. Han, Z. Chen, L. Dou, H Zhu*, E. Shi*, Phase-pure 2D tin halide perovskite thin flakes for stable lasing, Sci. Adv. 2023, 9, eadh0517.- we report the synthesis of a series of 2D tin perovskite bulk crystals with high phase purity via a mixed-solvent strategy. By engineering the quantum-well thickness (related to n value) and organic ligands, the optoelectronic properties, including photoluminescence emission, exciton-phonon coupling strength, and exciton binding energy, exhibit a wide tunability. In addition, these 2D tin perovskites exhibited excellent lasing performance. Both high–n value tin perovskite (n > 1) and n = 1 tin perovskite thin flakes were successfully optically pumped to lase. Furthermore, the lasing from 2D tin perovskites could be maintained up to room temperature. Our findings highlight the tremendous potential of 2D tin perovskites as promising candidates for high-performance lasers.- This paper is highlighted in Nature Nanotechnology (Lu Shi, Tin instead of lead for stable lasers, Nat. Nanotechnol. 2023, 18, 1131).- 2. J. Y. Park‡, R. Song‡, J. Liang‡, L. Jin‡, K. Wang, S. Li, E. Shi, Y. Gao, M. Zeller, S. J. Teat, P. Guo, L. Huang*, Y. S. Zhao*, V. Blum*, L. Dou*, Thickness control of organic semiconductor- incorporated perovskites, Nat. Chem. 2023, https://doi.org/10.1038/s41557-023-01311-0- 3. J. Shi‡, H. Xu‡, C. Heide, C. HuangFu, C. Xia, F. de Quesada, H. Shen, T. Zhang, L. Yu, A. Johnson, F. Liu, E. Shi, L. Jiao, T. Heinz, S. Ghimire, J. Li, J. Kong, Y. Guo*, A. M. Lindenberg*, Giant room-temperature nonlinearities from a monolayer Janus topological semiconductor, Nat. Commun. 2023, 14, 4953.- 4. Mahya Rahbar‡, Baini Li‡, Nicholas Hunter, Ibrahim Al Keyyam, Tianyu Wang*, Enzheng Shi*, Xinwei Wang*, Observing grain boundary-induced phonons mean free path in highly aligned SWCNT bundles by low-momentum phonon scattering, Cell Rep. Phys. Sci. 2023, 4, 101688.- 5. Q. Jiang‡, F. Wang‡, R. Li‡, B. Li, N. Wei, N. Gao, H. Xu, S. Zhao, Y. Huang, B. Wang, W. Zhang, X. Wu, S. Zhang, Y. Zhao, E. Shi, R. Zhang, Synthesis of Ultralong Carbon Nanotubes with Ultrahigh Yields, Nano Lett. 2023, 23, 523-532. - 2022 - 1. Y. Guo‡, E. Shi‡*, J. Zhu‡, P.-C. Shen, J. Wang, Y. Lin, Y. Mao, S. Deng, B. Li, J.-H. Park, A.-Y. Lu, S. Zhang, Q. Ji, Z. Li, C. Qiu, S. Qiu, Q. Li, L. Dou, Y. Wu, J. Zhang, T. Palacios*, A. Cao*, J. Kong*,Soft-lock drawing of super-aligned carbon nanotube bundles for nanometer electrical contacts, Nat. Nanotechnol. 2022, 17, 278–284.- The assembly of single-walled carbon nanotubes (CNTs) into high-density horizontal arrays is strongly desired for practical applications, but challenges remain despite myriads of research efforts. Herein, we developed a non-destructive soft-lock drawing method to achieve ultraclean single-walled CNT arrays with a very high degree of alignment (angle standard deviation of ~0.03°). These arrays contained a large portion of nanometre-sized CNT bundles, yielding a high packing density (~400 µm−1) and high current carrying capacity (∼1.8 × 108 A cm−2). This alignment strategy can be generally extended to diverse substrates or sources of raw single-walled CNTs. Significantly, the assembled CNT bundles were used as nanometre electrical contacts of high-density monolayer molybdenum disulfide (MoS2) transistors, exhibiting high current density (~38 µA µm−1), low contact resistance (~1.6 kΩ µm), excellent device-to-device uniformity and highly reduced device areas (0.06 µm2 per device), demonstrating their potential for future electronic devices and advanced integration technologies.- 2. X. Sheng, Y. Li, M. Xia, E. Shi*, Quasi-2D halide perovskite crystals and their optoelectronic applications, J. Mater. Chem. A 2022, 10, 19169-19183.- 3. Songhao Guo, Yahui Li, Yuhong Mao, Weijian Tao, Kejun Bu, Tonghuan Fu, Chang Zhao, Hui Luo, Qingyang Hu, Haiming Zhu, Enzheng Shi, Wenge Yang, Letian Dou, Xujie Lü, Sci. Adv. 2022, 8, eadd1984. - 2021 - 1. Akriti‡, E. Shi‡, S. B. Shiring‡, J. Yang, Y. Gao, C. L. Atencio-Martinez, A. Pistone, P. Liao, B. M. Savoie, L. Dou*; Layer-by-Layer Anionic Diffusion in Two-Dimensional Halide Perovskite Vertical Heterostructures, Nat. Nanotechnol. 2021, 16, 584-591.- 2. Y. Guo‡*, Y. Lin‡, K. Xie‡, B. Yuan, J. Zhu, P.-C. Shen, A.-Y. Lu, C. Su, E. Shi, K. Zhang, C. HuangFu, H. Xu, Z. Cai, J.-H. Park, Q. Ji, J. Wang, X. Dai, X. Tian, S. Huang, L. Dou, L. Jiao, J. Li, Y. Yu, J.-C. Idrobo, T. Cao, T. Palacios, J. Kong*, Designing artificial two-dimensional landscapes via atomic-layer substitution, Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2106124118.- 3. Akriti‡, S. Zhang‡, Z.-Y. Lin‡, E. Shi, B. P. Finkenauer, Y. Gao, A. J. Pistone, K. Ma, B. M. Savoie*, L. Dou*, Quantifying Anionic Diffusion in 2D Halide Perovskite Lateral Heterostructures, Adv. Mater. 2021, 33, 2105183. - 2020 - 1. E. Shi, L. Dou*, Halide perovskite epitaxial heterostructures, Acc. Mater. Res. 2020, 1, 213-224.- (selected as the inside cover) - 2. E. Shi‡, B. Yuan‡, S. B. Shiring, Y. Gao, Akriti, Y. Guo, C. Su, M. Lai, P. Yang, J. Kong, B. M. Savoie*, Y. Yu*, L. Dou*, Two-Dimensional Halide Perovskite Lateral Epitaxial Heterostructures, Nature 2020, 580, 614-620- (reported by multiple international media, including Science Daily, New Atlas, The Engineer, Grist, Nature Research Device & Materials Engineering Community etc.)- 3. S. Deng‡, E. Shi‡, L. Yuan, L. Jin, L. Dou, L. Huang*, Long-range exciton transport and slow annihilation in two-dimensional hybrid perovskites, Nat. Commun. 2020, 11, 664.- 4. X. Wang, X. Ma, E. Shi, P. Lu, L. Dou, X. Zhang, H. Wang*,Large‐Scale Plasmonic Hybrid Framework with Built‐In Nanohole Array as Multifunctional Optical Sensing Platforms, Small 2020, 16, 1906459.- 5. B. Yuan, E. Shi, C. Liang, L. Dou, Y. Yu*,Structural Damage of Two-Dimensional Organic–Inorganic Halide Perovskites, Inorganics 2020 8, 13.- 6. S. Deng, J. M. Snaider, Y. Gao, E. Shi, L. Jin, R. D. Schaller, L. Dou, L. Huang*,Long-lived charge separation in two-dimensional ligand-perovskite heterostructures, J. Chem. Phys. 2020, 152, 044711. - 7. E. Shi‡, S. Cui‡, N. Kempf, Q. Xing, T. Chasapis, H. Zhu, Z. Li, J.-H. Bahk, G J. Snyder, Y. Zhang, R. Chen, Y. Wu*, Origin of inhomogeneity in spark plasma sintered bismuth antimony telluride thermoelectric nanocomposites, Nano Res. 2020, 13, 1339–1346. - 2019- 1. E. Shi‡,S. Deng‡, B. Yuan, Y. Gao, Akriti, L. Yuan, C. S. Davis, D. Zemlyanov, Y. Yu, L. Huang, L. Dou*,Extrinsic and Dynamic Edge States of Two-Dimensional Lead Halide Perovskites, ACS Nano 2019, 13, 1635-1644.- 2. Y Gao, E. Shi, S. Deng, S. B. Shiring, J. M. Snaider, C. Liang, B. Yuan, R. Song, S. M. Janke, A. Liebman-Peláez, P. Yoo, M. Zeller, B. W. Boudouris, P. Liao, C. Zhu, V. Blum, Y. Yu, B. M. Savoie, L. Huang, L. Dou*, Molecular engineering of organic–inorganic hybrid perovskites quantum wells, Nat. Chem. 2019, 11, 1151–1157.- 3. Y. Guo, P.-C. Shen, C. Su, A.-Y. Lu, M. Hempel, Y. Han, Q. Ji, Y. Lin, E. Shi, E. McVay, L. Dou, D. A. Muller, T. Palacios, J. Li, X. Ling, J. Kong*, Additive manufacturing of patterned 2D semiconductor through recyclable masked growth, Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 3437.- 4. Y. Gao, Z. Wei, P. Yoo, E. Shi, M. Zeller, C. Zhu, P. Liao, L. Dou*, Highly stable lead-free perovskite field-effect transistors incorporating linear π-conjugated organic ligands, J. Am. Chem. Soc. 2019,141, 15577-15585.- 5. Y. Sun, S. Li, Y. Shang*, S. Hou, S. Chang, E. Shi, A. Cao*, Highly stretchable carbon nanotube fibers with tunable and stable light emission, Adv. Engineering Mater. 2020, 21, 1801126.- 6. Akriti, E. Shi, L. Dou, A leap towards high-performance 2D perovskite photodetectors , Trends in Chemistry 2019, 1, 365-367. - 2018 - 1. E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey, L. Dou, Two-dimensional halide perovskite nanomaterials and heterostructures, Chem. Soc. Rev. 2018, 47, 6046-6072.- (Selected as the inside cover) - 2. J. Hou, Y. Xie, A. Ji*, A. Cao, Y. Fang, E. Shi*, Carbon-Nanotube-Wrapped Spider Silks for Directed Cardiomyocyte Growth and Electrophysiological Detection, ACS Appl. Mater. Interfaces 2018, 10, 6793-6798. - 3. E. Shi‡, T. Feng‡, J.-H. Bahk, Y. Pan, W. Zheng, Z. Li, G. J. Snyder, S. T. Pantelides, Y. Wu*, Experimental and Theoretical Study on Well-Tunable Metal Oxide Doping Towards High Performance Thermoelectrics, ES Energy & Environment 2018, 2, 43-49- 4. Y. Qi‡, E. Shi‡, N. Peroutka-Bigus, B. Bellaire, M. Wannemuehler, A. Jergens, T. Barrett, Y. Wu, Q. Wang*, Ex vivo study of telluride nanowires in minigut, J. Biomed. Nanotechnol. 2018, 14, 978- 5. Z. Li‡, Y. Cui‡, Z. Wu‡, C. Milligan, L. Zhou, G. Mitchell, B. Xu, E. Shi, J. T. Miller, F. H. Ribeiro, Y. Wu*, Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts, Nat. Catalysis 2018, 1, 349-355.- 6. Z. Li, L. Yu, C. Milligan, T. Ma, L. Zhou, Y. Cui, Z. Qi, N. Libretto, B. Xu, J. Luo, E. Shi, Z. Wu*, H. Xin*, W. N. Delgass, J. T. Miller*, Y. Wu*, Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles, Nat. Commun. 2018, 9, 5258.- 2017 - 1. W Zheng, B. Xu, L. Zhou, Y. Zhou, H. Zheng, C. Sun, E. Shi, T.D. Fink, Y. Wu*, Recent progress in thermoelectric nanocomposites based on solution-synthesized nanoheterostructures, Nano Res. 2017 10, 1498-1509.- 2. L. Yang, Y. Zhao, W. Xu, E. Shi, W. Wei, X. Li, A. Cao, Y. Cao, Y. Fang*, Highly crumpled all-carbon transistors for brain activity recording, Nano Lett. 2017, 17, 71-77.- 2016 - 1. J. Shi, X. Li*, H. Cheng, Z. Liu, L. Zhao, T. Yang, Z. Dai, Z. Cheng, E. Shi, L. Yang, Z. Zhang, A. Cao, H. Zhu*, Y. Fang*, Graphene reinforced carbon nanotube networks for wearable strain sensors, Adv. Func. Mater. 2016, 26, 2078-2084. - 2015 - 1. E. Shi‡, H. Li‡, L. Yang‡, J. Hou, Y. Li, L. Li, A. Cao*, Y. Fang*, Carbon nanotube network embroidered graphene films for monolithic all-carbon electronics, Adv. Mater. 2015, 27, 682-688. - 2. E. Shi‡, H. Li‡, W. Xu, S. Wu, J. Wei, Y. Fang*, A. Cao*, Improvement of graphene-Si solar cells by embroidering graphene with a carbon nanotube spider-web, Nano Energy 2015, 17, 216-223.- 3. S. Wu, E. Shi, Y. Yang, W. Xu, X. Li, A. Cao*, Direct fabrication of carbon nanotube-graphene hybrid films by a blown bubble method, Nano Res. 2015, 8, 1746-1754.- 4. W. Xu, B. Deng, E. Shi, S. Wu, M. Zou, L. Yang, J. Wei, H. Peng, A. Cao*, Comparison of Nanocarbon-silicon solar cells with nanotube-Si or graphene-Si contact, ACS Appl. Mater. Interfaces 2015, 7, 17088-17094.- 5. H. Li, Q. Zhou, Y. Gao, X. Gui, L. Yang, M. Du, E. Shi, J. Shi, A. Cao*, Y. Fang*, Templated synthesis of TiO2 nanotube macrostructures and their photocatalytic properties, Nano Res. 2015, 8, 900-906.- 6. Y. Shang, X. He, C. Wang, L. Zhu, Q. Peng, E. Shi, S. Wu, Y. Yang, We. Xu, R. Wang, S. Du, A. Cao*, Y. Li*, Large-deformation, multifunctional artificial muscles based on single-walled carbon nanotube yarns, Adv. Engineering Mater. 2015, 17, 14-20.- 7. Y. Shang, C. Wang, X. He, J. Li, Q. Peng, E. Shi, R. Wang, S. Du, A. Cao*, Y. Li*, Self-stretchable, helical carbon nanotube yarn supercapacitors with stable performance under extreme deformation conditions, Nano Energy 2015, 12, 401-409.- 8. Y. Yang, P. Li, S. Wu, X. Li, E. Shi, Q. Shen, D. Wu, W. Xu, An. Cao*, Q. Yuan*, Hierarchically designed three dimensional macro/mesoporous carbon frameworks for advanced electrochemical capacitance storage, Chemistry-A European Journal 2015, 21, 6157-6164.- 9. C. Wang, Y. Li*, X. He, Y. Ding, Q. Peng, W. Zhao, E. Shi, S. Wu, A. Cao*, Cotton-derived bulk and fiber aerogels grafted with nitrogen-doped graphene, Nanoscale 2015, 7, 7550-7558.- 10. A. Ouyang, C. Wang, S. Wu, E. Shi, W. Zhao, A. Cao*, D. Wu*, Highly porous core–shell structured graphene-chitosan beads, ACS Appl. Mater. Interfaces 2015, 7, 14439-14445.- 11. S. Wu, Ya. Yang, Y. Li, C. Wang, W. Xu, E. Shi, M. Zou, L. Yang, X. Yang, Y. Li, A. Cao*, Blown bubble assembly of graphene oxide patches for transparent electrodes in carbon-silicon solar cells, ACS Appl. Mater. Interfaces 2015, 7, 28330-28336.- 12. 师恩政,徐文静,吴诗婷,曹安源*, 金掺杂碳纳米管透明导电薄膜的制备和性能研究[EB/OL]. 北京:中国科技论文在线 [2015-06-11].- 2014 - 1. Y. Yang, E. Shi, P. Li, D. Wu, S. Wu, Y. Shang, W. Xu, A. Cao*, Q. Yuan*, A compressible mesoporous SiO2 sponge supported by a carbon nanotube network, Nanoscale 2014, 6, 3585-3592.- 2. P. Li, E. Shi, Y. Yang, Y. Shang, Q. Peng, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, A. Cao*, D. Wu*, Carbon nanotube-polypyrrole core-shell sponge and its application as highly compressible supercapacitor electrode, Nano Res. 2014, 7, 209-218.- 3. S. Wu, K. Huang, E. Shi, W. Xu, Y. Fang, Y. Yang, A. Cao*, Soluble polymer-based, blown bubble assembly of single- and double-layer nanowires with shape control, ACS Nano 2014, 8, 3522-3530.- 4. Z. Li, S. A. Kulkarni, P. P. Boix, E. Shi, A. Cao, K. Fu, S. K. Batabyal, J. Zhang, Q. Xiong, L. H. Wong*, N. Mathews*, S. G. Mhaisalkar, Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells, ACS Nano 2014, 8, 6797-6804.- 5. Q. Peng, Y. Li*, X. He, X. Gui, Y. Shang, C. Wang, C. Wang, W. Zhao, S. Du, E. Shi, P. Li, D. Wu, A. Cao*, Graphene nanoribbon aerogels unzipped from carbon nanotube sponges, Adv. Mater. 2014, 26, 3241-3247.- 6. P. Li, Y. Yang, E. Shi, Q. Shen, Y. Shang, S. Wu, J. Wei, K. Wang, H. Zhu, Q. Yuan, A. Cao*, D. Wu*, Core-double-shell, carbon nanotube@polypyrrole@MnO2 sponge as freestanding, compressible supercapacitor electrode, ACS Appl. Mater. Interfaces 2014, 6, 5228-5234.- 7. C. Wang, X. He, Y. Shang, Q. Peng, Y. Qin, E. Shi, Y. Yang, S. Wu, W. Xu, S. Du, A. Cao*, Y. Li*, Multifunctional graphene sheet-nanoribbon hybrid aerogels, J. Mater. Chem. A 2014, 2, 14994-15000.- 8. W. Zhao, Y. Li*, S. Wang, X. He, Y. Shang, Q. Peng, C. Wang, S. Du, X. Gui, Y. Yang, Q. Yuan, E. Shi, S. Wu, W. Xu, A. Cao*, Elastic improvement of carbon nanotube sponges by depositing amorphous carbon coating, Carbon 2014, 76, 19-26. - 2013 - 1. E. Shi‡, H. Li‡*, L. Yang, L. Zhang, Z. Li, P. Li, Y. Shang, S. Wu, X. Li, J. Wei, K. Wang, H. Zhu*, D. Wu, Y. Fang, A. Cao*,Colloidal antireflection coating improves graphene-silicon solar cells, Nano Lett. 2013, 13, 1776-1781.- (Record efficiency for graphene-Si solar cells;- reported by C&EN news)- 2. Y. Shang, Y. Li*, X. He, S. Du, L. Zhang, E. Shi, S.Wu, Z. Li, P. Li, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao*, Highly twisted double-helix carbon nanotube yarns, ACS Nano 2013, 7, 1446-1453.- 3. Y. Li, Y. Shang, X. He*, Q. Peng, S. Du, E. Shi, S. Wu, Z. Li, P. Li, A. Cao*, Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators, ACS Nano 2013, 7, 8128-8135.- 4. H. Jin*, A. Cao, E. Shi, J. Seitsonen, L. Zhang, R. H. A. Ras, L. A. Berglund, M. Ankerfors, A. Walther, O. Ikkala*, Ionically interacting nanoclay and nanofibrillated cellulose lead to tough bulk nanocomposites in compression by forced self-assembly, J. Mater. Chem. B 2013, 1, 835-840.- 5. P. Li, C. Kong, Y. Shang, E. Shi, Y. Yu, W. Qian, F. Wei, J. Wei, K. Wang, H. Zhu, A. Cao*, D. Wu*, Highly deformation-tolerant carbon nanotube sponges as supercapacitor electrodes, Nanoscale 2013, 5, 8472-8479.- 6. Y. Shang, Y. Li*, X. He, L. Zhang, Z. Li, P. Li, E. Shi, S. Wu, A. Cao*, Elastic carbon nanotube straight yarns embedded with helical loops, Nanoscale 2013, 5, 2403-2410. - 2012 - 1. E. Shi, J. Nie, X. Qin, Z. Li, L. Zhang, Z. Li, P. Li, Y. Jia, C. Ji, J. Wei, K. Wang, H. Zhu, D. Wu, Y. Li, Y. Fang, W. Qian, F. Wei, A. Cao*, Nanobelt-carbon nanotube cross-junction solar cells, Energy Environ. Sci. 2012, 5, 6119-6125 - 2. E. Shi, L. Zhang, Z. Li, P. Li, Y. Shang, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, S. Zhang, A. Cao*,TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15% , Sci. Rep. 2012, 2, 884.- 3. L. Zhang, E. Shi, Z. Li, P. Li, Y. Jia, C. Ji, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao*, Wire-supported CdSe nanowire array photoelectrochemical solar cells, Phys. Chem. Chem. Phys. 2012, 14, 3583-3588.- 4. L. Zhang, E. Shi, C. Ji, Z. Li, P. Li, Y. Shang, Y. Li, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao*, Fiber and fabric solar cells by directly weaving carbon nanotube yarns with CdSe nanowire-based electrodes, Nanoscale 2012, 4, 4954-4959.- 5. Y. Shang, X. He, Y. Li*, L. Zhang, Z. Li, C. Ji, E. Shi, P. Li, K. Zhu, Q. Peng, C. Wang, X. Zhang, R. Wang, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao*, Super-stretchable spring-like carbon nanotube ropes, Adv. Mater. 2012, 24, 2896-2900.- 6. S. Zhang, C. Ji, Z. Bian, P. Yu, L. Zhang, D. Liu, E. Shi, Y. Shang, H. Peng, Q. Cheng, D. Wang*, C. Huang, A. Cao*, Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells, ACS Nano 2012, 6, 7191-7198.- 7. P. Li, Z. Li, L. Zhang, E. Shi, Y. Shang, A. Cao*, H. Li, Y. Jia, J. Wei, K. Wang, H. Zhu, D. Wu, Bubble-promoted assembly of hierarchical, porous Ag2S nanoparticle membranes, J. Mater. Chem. 2012, 22, 24721-24726.- 8. Z. Li, J. Wei, P. Li, L. Zhang, E. Shi, C. Ji, J. Liu, D. Zhuang, Z. Liu, J. Zhou, Y. Shang, Y. Li, K. Wang, H. Zhu, D. Wu, A. Cao*, Solution-processed bulk heterojunction solar cells based on interpenetrating CdS nanowires and carbon nanotubes, Nano Res. 2012, 5, 595-604.- 9. H. Li, X. Gui, Ch. Ji, P. Li, Z. Li, L. Zhang, E. Shi, K. Zhu, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao*, Photocatalytic, recyclable CdS nanoparticle–carbon nanotube hybrid sponges, Nano Res. 2012, 5, 265-271.- 10. Y. Jia, A. Cao*, F. Kang, P. Li, X. Gui, L. Zhang, E. Shi, Ji. Wei, K. Wang, H.Zhu, D. Wu*, Strong and reversible modulation of carbon nanotube–silicon heterojunction solar cells by an interfacial oxide layer, Phys. Chem. Chem. Phys. 2012, 14, 8391-8396.- 2011 - 1. C. Ji, H. Li, L. Zhang, Y. Liu, Y. Li, Y. Jia, Z. Li, P. Li, E. Shi, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao*, Suspended, straightened carbon nanotube arrays by gel chapping, ACS Nano 2011, 5, 5656-5661.- 2. L. Zhang, L. Fan, Z. Li, E. Shi, X. Li, H. Li, C. Ji, Y. Jia, J. Wei, K. Wang, H. Zhu*, D. Wu, A. Cao*, Graphene-CdSe nanobelt solar cells with tunable configurations, Nano Res. 2011, 4, 891-900.- 3. P. Li, S. Wang, Y. Jia, Z. Li, C. Ji, L. Zhang, H. Li, E. Shi, Z. Bian, C. Huang, J. Wei, K. Wang, H. Zhu, D. Wu, A. Cao*, CuI–Si heterojunction solar cells with carbon nanotube films as flexible top-contact electrodes, Nano Res. 2011, 4, 979-986- 2010 - 1. L. Zhang, Y. Jia, S. Wang, Z. Li, C, J. Wei, H. Zhu, K. Wang, D. Wu, E. Shi, Y. Fang, A.Cao*, Carbon nanotube and CdSe nanobelt Schottky junction solar cells, Nano Lett. 2010, 10, 3583-3589.
Enzheng Shi Lab
Enzheng Shi group at Westlake University
https://static-assets.sxlcdn.com/images/fb_images/default-sxl.jpg



















